Efecto biológico de la saponina de quinua en el control de enfermedades poscosecha en fresas (Fragaria x ananassa)

Autores/as

  • Alberto L. Huamaní Huamaní Universidad Nacional de San Cristóbal de Huamanga

DOI:

https://doi.org/10.51440/unsch.revistainvestigacion.28.1.2020.378

Palabras clave:

Fragaria x ananassa, saponina

Resumen

En la presente investigación se tiene como objetivo evaluar el efecto biológico de la saponina de quinua en el control de enfermedades poscosecha de fresas. Se trabajaron con fresas de la variedad Chandler cultivadas en la región de Ayacucho. Las muestras de fresa fueron tratadas con saponina en polvo, aplicándose a cubrir la superficie de las fresas y luego almacenándose a medio ambiente y en refrigeración. Durante el almacenamiento se observaron la aparición de las enfermedades como la presencia de Botrytis cinérea, de manera objetiva. Al final de este periodo también fueron analizados los componentes tales como: Contenido total de antocianinas a través del método de diferencia de pH (Wrolstad, 1976), acidez total por la metodología usas por (Jesús Filho et al., 2018)., y ácido ascórbico por el método colorimétrico con 2,4-dinitrofenilhidrazina (2,4-DNPH) según (Strohecker & Henning, 1967). Los resultados fueron: efecto conservador de la saponina fue de 13 días de almacenamiento en refrigeración y al medio ambiente un efecto del 81,333 ±8,327 y de 85,667 ±6,506 % respectivamente; de 58,610 ±2,10 y 29,72 ±4,20 de antocianina total (mg de cyanidin 3-glucoside equivalente /100 g de peso de fruto) respectivamente; de 92,170±10,110 y 73,210±0,350 de contenido de vitamina C (mg ac. ascórbico/100 g peso fruto) y de acidez titulable de 0,513±0,045 y 0,540±0,010 (mg de ácido cítrico 100 g−1 pulpa) respectivamente. Concluyéndose que la saponina de quinua tiene un efecto favorable en la conservación de las fresas.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aaby, K., Wrolstad, R., Ekeberg, D., & Skrede, G. (2007). Polyphenol Composition and Antioxidant Activity in Strawberry Purees; Impact of Achene Level and Storage. J Agric Food Chem, 55, 5156-5166. doi:10.1021/jf070467u

Arnon, H., Zaitsev, Y., Porat, R., & Poverenov, E. (2014). Effects of carboxymethyl cellulose and chitosan bilayer edible coating on postharvest quality of citrus fruit. Postharvest Biology and Technology, 87, 21-26. doi:https://doi.org/10.1016/j.postharvbio.2013.08.007

Augustin, J. M., Kuzina, V., Andersen, S. B., & Bak, S. (2011). Molecular activities, biosynthesis and evolution of triterpenoid saponins. Phytochemistry, 72(6), 435-457. doi:https://doi.org/10.1016/j.phytochem.2011.01.015

Ayala-Zavala, J. F., Wang, S. Y., Wang, C. Y., & González-Aguilar, G. A. (2004). Effect of storage temperatures on antioxidant capacity and aroma compounds in strawberry fruit. LWT - Food Science and Technology, 37(7), 687-695. doi:https://doi.org/10.1016/j.lwt.2004.03.002

Cordenunsi, B. R., Genovese, M. I., Oliveira do Nascimento, J. R., Aymoto Hassimotto, N. M., José dos Santos, R., & Lajolo, F. M. (2005). Effects of temperature on the chemical composition and antioxidant activity of three strawberry cultivars. Food Chem, 91(1), 113-121. doi:https://doi.org/10.1016/j.foodchem.2004.05.054

Cordenunsi, B. R., Oliveira do Nascimento, J. R., & Lajolo, F. M. (2003). Physico-chemical changes related to quality of five strawberry fruit cultivars during cool-storage. Food Chem, 83(2), 167-173. doi:https://doi.org/10.1016/S0308-8146(03)00059-1

Crecente-Campo, J., Nunes-Damaceno, M., Romero-Rodríguez, M. A., & Vázquez-Odériz, M. L. (2012). Color, anthocyanin pigment, ascorbic acid and total phenolic compound determination in organic versus conventional strawberries (Fragaria×ananassa Duch, cv Selva). Journal of Food Composition and Analysis, 28(1), 23-30. doi:https://doi.org/10.1016/j.jfca.2012.07.004

Chaemsanit, S., Matan, N., & Matan, N. (2018). Effect of peppermint oil on the shelf-life of dragon fruit during storage. Food Control, 90, 172-179. doi:https://doi.org/10.1016/j.foodcont.2018.03.001

Chen, J., Mao, L., Lu, W., Ying, T., & Luo, Z. (2016). Transcriptome profiling of postharvest strawberry fruit in response to exogenous auxin and abscisic acid. Planta, 243(1), 183-197. doi:10.1007/s00425-015-2402-5

da Silva, F. L., Escribano-Bailón, M. T., Alonso, J. J. P., Rivas-Gonzalo, J. C., & Santos-Buelga, C. (2007). Anthocyanin pigments in strawberry. LWT-Food Science and Technology, 40(2), 374-382.

da Silva Pinto, M., Lajolo, F. M., & Genovese, M. I. (2008). Bioactive compounds and quantification of total ellagic acid in strawberries (Fragaria x ananassa Duch.). Food Chem, 107(4), 1629-1635. doi:https://doi.org/10.1016/j.foodchem.2007.10.038

Giampieri, F., Forbes-Hernandez, T. Y., Gasparrini, M., Alvarez-Suarez, J. M., Afrin, S., Bompadre, S., . . . Battino, M. (2015). Strawberry as a health promoter: an evidence based review. Food & Function, 6(5), 1386-1398. doi:10.1039/C5FO00147A

Giné-Bordonaba, J., & Terry, L. A. (2016). Effect of deficit irrigation and methyl jasmonate application on the composition of strawberry (Fragaria x ananassa) fruit and leaves. Scientia Horticulturae, 199, 63-70. doi:https://doi.org/10.1016/j.scienta.2015.12.026

Gössinger, M., Moritz, S., Hermes, M., Wendelin, S., Scherbichler, H., Halbwirth, H., . . . Berghofer, E. (2009). Effects of processing parameters on colour stability of strawberry nectar from puree. Journal of Food Engineering, 90(2), 171-178. doi:https://doi.org/10.1016/j.jfoodeng.2008.06.018

Hernandez-Herrero, J. A., & Frutos, M. J. (2014). Colour and antioxidant capacity stability in grape, strawberry and plum peel model juices at different pHs and temperatures. Food Chem, 154, 199-204. doi:10.1016/j.foodchem.2014.01.007

Jesus Filho, M. d., Scolforo, C. Z., Saraiva, S. H., Pinheiro, C. J. G., Silva, P. I., & Della Lucia, S. M. (2018). Physicochemical, microbiological and sensory acceptance alterations of strawberries caused by gamma radiation and storage time. Scientia Horticulturae, 238, 187-194. doi:https://doi.org/10.1016/j.scienta.2018.04.053

Kim, S. K., Bae, R. N., Na, H., Ko, K. D., & Chun, C. (2013). Changes in physicochemical characteristics during fruit development in June-bearing strawberry cultivars. Horticulture, Environment, and Biotechnology, 54(1), 44-51. doi:10.1007/s13580-013-0166-z

Li, D., Ye, Q., Jiang, L., & Luo, Z. (2017). Effects of nano-TiO2 -LDPE packaging on postharvest quality and antioxidant capacity of strawberry (Fragaria ananassa Duch.) stored at refrigeration temperature. J Sci Food Agric, 97(4), 1116-1123. doi:10.1002/jsfa.7837

Mazur, S. P., Nes, A., Wold, A.-B., Remberg, S. F., Martinsen, B. K., & Aaby, K. (2014). Effects of ripeness and cultivar on chemical composition of strawberry (Fragaria×ananassa Duch.) fruits and their suitability for jam production as a stable product at different storage temperatures. Food Chem, 146, 412-422. doi:https://doi.org/10.1016/j.foodchem.2013.09.086

Miranda, L. F., Rodriguez, N. M., Pereira, E. S., Queiroz, A. C. d., Sainz, R. D., Pimentel, P. G., & Gontijo Neto, M. M. (2012). Chemical composition and ruminal degradation kinetics of crude protein and amino acids, and intestinal digestibility of amino acids from tropical forages. Revista Brasileira de Zootecnia, 41, 717-725.

Muengkaew, R., Chaiprasart, P., & Warrington, I. (2016). Changing of physiochemical properties and color development of mango fruit sprayed methyl Jasmonate. Scientia Horticulturae, 198, 70-77. doi:https://doi.org/10.1016/j.scienta.2015.11.033

Neri, F., Cappellin, L., Spadoni, A., Cameldi, I., Algarra Alarcón, A., Aprea, E., . . . Biasioli, F. (2014). Role of strawberry volatile organic compounds in the development of Botrytis cinerea infection. Plant Pathology, 64. doi:10.1111/ppa.12287

Nikkhah, E., Khaiamy, M., Heidary, R., & Azar, A. (2010). The effect of ascorbic acid and H2O2 treatment on the stability of anthocyanin pigments in berries. Turkish Journal of Biology, 34, 47-53. doi:10.3906/biy-0805-14

Nunes, M. C. N., Brecht, J. K., Morais, A. M. M. B., & Sargent, S. A. (1998). Controlling Temperature and Water Loss to Maintain Ascorbic Acid Levels in Strawberries During Postharvest Handling. Journal of Food Science, 63(6), 1033-1036. doi:10.1111/j.1365-2621.1998.tb15848.x

Odriozola-Serrano, I., Soliva-Fortuny, R., & Martín-Belloso, O. (2010). Changes in bioactive composition of fresh-cut strawberries stored under superatmospheric oxygen, low-oxygen or passive atmospheres. Journal of Food Composition and Analysis, 23(1), 37-43. doi:https://doi.org/10.1016/j.jfca.2009.07.007

Özcan, M. M., & Hacıseferoğulları, H. (2007). The Strawberry (Arbutus unedo L.) fruits: Chemical composition, physical properties and mineral contents. Journal of Food Engineering, 78(3), 1022-1028. doi:https://doi.org/10.1016/j.jfoodeng.2005.12.014

Patras, A., Brunton, N., Brijesh kumar, T., & Butler, F. (2011). Stability and Degradation Kinetics of Bioactive Compounds and Colour in Strawberry Jam during Storage. Food and Bioprocess Technology, 4, 1245-1252. doi:10.1007/s11947-009-0226-7

Patras, A., Brunton, N. P., O'Donnell, C., & Tiwari, B. K. (2010). Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends in Food Science & Technology, 21(1), 3-11. doi:https://doi.org/10.1016/j.tifs.2009.07.004

Shin, Y., Liu, R. H., Nock, J. F., Holliday, D., & Watkins, C. B. (2007). Temperature and relative humidity effects on quality, total ascorbic acid, phenolics and flavonoid concentrations, and antioxidant activity of strawberry. Postharvest Biology and Technology, 45(3), 349-357. doi:https://doi.org/10.1016/j.postharvbio.2007.03.007

Shin, Y., Ryu, J.-A., Liu, R. H., Nock, J. F., & Watkins, C. B. (2008). Harvest maturity, storage temperature and relative humidity affect fruit quality, antioxidant contents and activity, and inhibition of cell proliferation of strawberry fruit. Postharvest Biology and Technology, 49(2), 201-209. doi:https://doi.org/10.1016/j.postharvbio.2008.02.008

Skrede, G., Wrolstad, R. E., Lea, P., & Enersen, G. (1992). Color Stability of Strawberry and Blackcurrant Syrups. Journal of Food Science, 57(1), 172-177. doi:10.1111/j.1365-2621.1992.tb05449.x

Strohecker, H., & Henning, R. (1967). Analisis de vitaminas: Métodos comprobados Paz Montalvo Madrid: Spain.

Van de Velde, F. (2013). Bioactive Compounds and Antioxidant Capacity of Camarosa and Selva Strawberries (Fragaria x ananassa Duch.) (Vol. 2).

Wrolstad, R. E. (1976). Color and Pigment Analyses in Fruit Products: Oregon State University.

Zhang, H., Li, R., & Liu, W. (2011). Effects of chitin and its derivative chitosan on postharvest decay of fruits: a review. International journal of molecular sciences, 12(2), 917-934. doi:10.3390/ijms12020917

Descargas

Publicado

2020-01-01

Cómo citar

Huamaní Huamaní, A. L. (2020). Efecto biológico de la saponina de quinua en el control de enfermedades poscosecha en fresas (Fragaria x ananassa). Investigación, 28(1), 249–256. https://doi.org/10.51440/unsch.revistainvestigacion.28.1.2020.378

Número

Sección

INGENIERÍA QUÍMICA Y METALURGIA