RELACIÓN DE LA CONCENTRACIÓN DE CLOROFILA Y REFLECTANCIA ESPECTRAL DE ALGUNOS CULTIVOS ANDINOS DE LA PROVINCIA DE HUAMANGA, 2020
DOI:
https://doi.org/10.51440/unsch.revistainvestigacion.29.1.2021.294Palabras clave:
Reflectancia espectral, índices de contenido de clorofila, índices de contenido de aguaResumen
Se ha obtenido la reflectancia espectral de seis cultivos andinos típicos de la región andina peruana, particularmente de Ayacucho, calculando los índices del contenido de clorofila (ICC) y de agua (ICA) de las hojas de los cultivos. Los datos de reflectancia fueron medidos mediante un espectroradiómetro Field Spec 4 entre 350 y 2500 nanómetros en intervalos de 1 nm, por el período comprendido entre el 17 de febrero y 9 de marzo de 2020 en intervalos de una semana. Los resultados muestran que el maíz y papa tienen un ligero mayor contenido de clorofila que la quinua, mientras que en el caso del contenido de agua, las hojas del maíz tienen menos contenido de agua respecto a la papa y quinua. El otro rasgo es que en la quinua hay un incremento del contenido de agua mientras que una disminución en maíz y papas. Si bien estos resultados iniciales indican diferencias y similitudes entre los cultivos a pesar de tener las mismas condiciones ambientales de los cultivos, sugiere que se realicen estudios futuros al respecto.
Descargas
Citas
Ceccato, P., Flasse, S., Tarantola, S., Jacquemoud, S., &Grégoire, J.M. (2001). Detecting vegetation leaf water content using reflectance in the optical domain. Remote Sensing of Environment, 77(1), 22–33. doi:10.1016/s00344257(01)00191-2.
Chen, P., Haboudane, D., Tremblay, N., Wang, J., Vigneault, P. y Li, B. (2010). New spectral indicator assessing the efficiency of crop nitrogen treatment in corn and wheat, Remote Sensing of Environment, 114, 1987–1997.
Cho, M. A. y Skidmore, A. K. (2006). A new technique for extracting the red edge position from hyperspectral data: The linear extrapolation method. Remote Sensing of Environment, 1 0 1 ( 2 ) , 1 8 1 – 1 9 3 . doi:10.1016/j.rse.2005.12.011.
Collins, W., 1978, Remote sensing of crop type and maturity. Photogrammetric Engineering and Remote Sensing, 44, pp. 43–55.
Covshoff, S. (Editor). (2018). Photosyntesis, Methods and Protocols Human Press. Springer.
Croce, R., van Grondelle, R., van Amerongen, H. y van Stokkum, I (Editores). (2018). Light Harvesting in Photosyntesis. CRC Press.
Curran, P. J., Dungan, J. L., and Gholz, H. L., (1990). Exploring the relationship between reflectance red Edge and chlorophyll content in slash pine, Tree Physiology , 7, 33-48.
Curran, P. J., Dungan, J. L., Macler, B. A., and Plummer, S. E. (1991). The effect of a red leaf pigment on the relationship between red Edge and chlorophyll concentration, Remote Sensing of Environment , 35, 69-76.
Danson, F. M. yPlummer, S. E., (1995). Red Edge response to forest leaf are a index. International Journal of Remote Sensing , 16, 183-188.
Datt, B. (1999). A New Reflectance Index for Remote Sensing of Chlorophyll Content in Higher Plants: Tests using Eucalyptus Leaves. Journal of Plant Physiology, 154(1), 30–36. doi:10.1016/s0176-1617(99)80314-9.
Filella, I.y Peñuelas, J. (1994). The red Edge position and shape as indicators of plant chlorophyll content, biomass and hydric status, International Journal of Remote Sensing, 15, 1459-1470.
Genc, L., Inalpulat, M., Kizil, U., Mirik, M, Smith, S.E. y Mendes, M.(2013). Determination of water stress with spectral reflectance on sweet corn (Zea mays L.) using classification tree (CT) analysis, Zemdirbyste-Agriculture, 100, 81–90. DOI 10.13080/z-a.2013.100.011.
Gitelson, A. A., Merzlyak, M. N., y Lichtenthaler, H. K. (1996). Detection of Red Edge Position and Chlorophyll Content by Reflectance Measurements Near 700 nm. Journal of Plant Physiology, 148(3-4), 501–508. doi:10.1016/s01761617(96)80285-9.
Golbeck, J. y van der Est, A. (Editores). (2014). The Biophysics of Photosyntesis, Springer.
Griffiths, D.J. (2013). Introduction to Electrodynamics, Pearson, Fourth Edition. Grimes, D.M. y
Grimes, C.A. (2005). The Electromagnetic Origin of Quantum Theory and Ligth, Second Edition, World Scientific.
Guangjiana, Y.,Ronghaia,H., Jinghuia, L., Maried, W., Hailana, J., Xihana, M., Donghuia, X. y Wuminga, Z. (2019). Review of indirect optical measurements of leaf area index: Recent advances, challenges, and perspectives, Agricultural and Forest Meteorology, 265, 390-4111.
Horler, D. N. H., Dockray, M., y Barber, J. (1983). The red edge of plant leaf reflectance. International Journal of Remote Sensing, 4(2), 273–288. doi:10.1080/01431168308948546.
Im, J., y Jensen, J. R. (2008). Hyperspectral Remote Sensing of Vegetation. Geography Compass, 2(6), 1943–1961. doi:10.1111/j.1749-8198.2008.00182.x.
Jacquemond, S. y Ustin, S. (2019). Leaf Optical Prperties, Cambridge University Press.
Jackson, J.D. (1999). Classical Electrodynamcis. Third Edition, John Wiley & Sons, Inc.
Jensen, J.R. (2014). Remote Sensing of the Environmente and Earth Resource Perspective, Sec. Edit., Pearson New International Edition.
Jin, X., Shi, C., Yu, C.Y., Yamada, T. y Sacks, E.J. (2017). Determination of Leaf Water Content by Visible and NearInfrared Spectrometry and Multivariate Calibration in Miscanthus . Front. PlantSci. 8 : 7 2 1 . d o i : 10.3389/fpls.2017.00721.
Lang, K.R. (2006). Sun, Light and Sky, Second Edition, Springer.
Lin, C., Popescu, S. C., Huang, S. C., Chang, P. T., & Wen, H. L. (2015). A novel reflectance-based model for evaluating chlorophyll concentrations of fresh and water-stressed leaves. Biogeosciences, 12(1), 49–66. doi:10.5194/bg-1249-2015.
Liu, N., Wu, L., Chen, L., Sun, H., Dong, Q., & Wu, J. (2018). Spectral Characteristics Analysis and Water Content Detection of Potato Plants Leaves. IFAC-PapersOnLine, 51(17), 541–546. doi:10.1016/j.ifacol.2018.08.152.
Luo, X., Croft, H., Chen, J. M., He, L., & Keenan, T. F. (2019). Improved estimates of global terrestrial photosynthesis using information on leaf chlorophyll content. Global Change Biology. doi:10.1111/gcb.14624. Mead, C.A. (2000). Collective Electrodynamics, Quantum Fundations of Electrodynamics, The MIT Press, Massachusetts.
Miphokasap, P., Honda, K., Vaiphasa, C., Souris, M. y Nagai, M. (2012). Estimating Canopy Nitrogen Concentration in Sugarcane Using Field Imaging Spectroscopy, Remote Sens. 2012, 4, 1651-1670; doi:10.3390/rs4061651.
Morrey, J. R. (1968). On determining spectral peak positions from composite spectra with a digital computer. Analytical Chemistry, 40(6), 905–914. doi:10.1021/ac60262a006.
Obeidat, W., Avila, L., Earl, H., & Lukens, L. (2018). Leaf Spectral Reflectance of Maize Seedlings and Its Relationship to Cold Tolerance. Crop Science, 0 ( 0 ) , 0 . doi:10.2135/cropsci2018.02.0115.
Pfeffer, J.I. y Nir, S. (2000). Modern Physics, An Introductory Text, Imperial College Press.
Railyan, V. Y. y Korobov, R. M. (1993). Red Edge structure of canopy refflectance spectra of triticale, Remote Sensing of Environment , 46, 173-182
Sneppen, K. y Zocchi, G. (2005). Physiscs in Molecular Biology, Cambridge University Press.
Sun, H., Liu, N., Wu, L., Chen, L., Yang, L., Li, M., & Zhang, Q. (2018). Water Content Detection of Potato Leaves Based on Hyperspectral Image. IFAC-PapersOnLine, 51(17), 443–448. doi:10.1016/j.ifacol.2018.08.179.
Velichkova, K. y Krezhova, D. (2019). Extraction of the Red Edge Position from Hyperspectral Reflectance Data for Plant Stress Monitoring, AIP Conference Proceedings 2075, 130018 (2019); https://doi.org/10.1063/1.5091303 Published Online: 26 February 2019.
Wang, J., Chen, Y., Chen, F., Shi, T., & Wu, G. (2018). Wavelet-based coupling of leaf and canopy reflectance spectra to improve the estimation accuracy of foliar nitrogen concentration. Agricultural and Forest Meteorology, 248, 306–315.doi:10.1016/j.agrformet.2017.10.017.
Xue, L., & Yang, L. (2009). Deriving leaf chlorophyll content of green-leafy vegetables from hyperspectral reflectance. ISPRS Journal of Photogrammetry and Remote S e n s i n g , 6 4 ( 1 ) , 9 7 – 1 0 6 . doi:10.1016/j.isprsjprs.2008.06.002.
Yan, G., Hu, R., Luo, J., Weiss, M., Jiang, H., Mu, X., y Zhang, W. (2019). Review of indirect optical measurements of leaf area index: Recent advances, challenges, and perspectives. Agricultural and Forest Meteorology, 265, 390–411.doi:10.1016/j.agrformet.2018.11.033.
Yoder, B. J., y Pettigrew-Crosby, R. E. (1995). Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra (400–2500 nm) at leaf and canopy scales. Remote Sensing of Environment, 53(3), 199–211. doi:10.1016/0034-4257(95)00135-n.
Zhao, B., Duan, A., Ata-Ul-Karim, S. T., Liu, Z., Chen, Z., Gong, Z, Ning, D. (2018). Exploring new spectral bands and vegetation indices for estimating nitrogen nutrition index of summer maize. European Journal of Agronomy, 93, 113–125.doi:10.1016/j.eja.2017.12.006.
Zheng, T., Liu, N., Wu, L., Li, M., Sun, H., Zhang, Q., & Wu, J. (2018). Estimation of Chlorophyll Content in Potato Leaves Based on Spectral Red Edge Position. IFACPapersonline, 5 1 ( 1 7 ) , 6 0 2 – 6 0 6 . doi:10.1016/j.ifacol.2018.08.131.
Zoogman, P., Liu, X., Chance, K., Sun, Q., Schaaf, C., Mahr, T., & Wagner, T. (2016). A climatology of visible surface reflectance spectra. Journal of Quantitative Spectroscopy an d Radiactive transfer, 1 8 0 , 39–46.doi:10.1016/j.jqsrt.2016.04.003.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.